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Abstract&The foremost characteristic of close-contact melting is that the source and the solid are 
continuously separated by a very thin melt film in which the flow is predominantly in one direction (i.e. along 
the thin film channel). This fact is used to formulate a mathematical model and develop a marching integration 
solution procedure for the model equations. As an example, the problem of melting under a descending, 
horizontal, cylindrical source at constant surface heat flux is solved. The results indicate that the heat transfer 
from the source to the solid is dominated by conduction across the thin melt layer. For this configuration, the 
effects of Stefan number and the relative density of the source on its velocity are investigated and reported. 
The predicted heat source velocity and its dependence on its relative density is in good agreement with the 

experiments. 

1. INTRODUCTION 

CONTACT-MELTING occurs if a heat source and a solid 
are pressed against each other while the solid is being 
melted. The physical situation involves motion ofeither 
the heat source or the solid which prevents 
accumulation of the melt between the source and the 
solid. This phenomenon takes place in numerous 
natural and technological processes and, depending on 
whether the source or the solid is unconstrained, two 
types of applications are recognized. In one group, an 
unconfined heat source melts its way through the 
surrounding solid. This situation arises in such diverse 
fields as process metallurgy and welding [ 11, geology 
[2] and nuclear technology [3,4]. In the field of nuclear 
technology, this problem has two important applic- 
ations, namely, the ‘self-burial’ waste disposal scheme 
[4] and the reactor core ‘melt-down’ accident [S]. The 
other group ofapplications involve a moving solid. One 
example arises when melting of an unconstrained solid 
in an enclosure is accompanied by a change in density 
[6-Q the solid is pressed against the hot container wall 
in response to the net forces acting on it (gravitational, 
buoyancy, shear forces, etc.). 

During the last decade, phase-change heat transfer 
has been investigated quite extensively due to its 
important applications in metallurgy, latent heat-of- 
fusion energy storage systems, spacecraft thermal 
control and others. The direct-melting phenomenon, 
however, has been ignored(by assuming equal densities 
for the solid and liquid in the analytical work) or 
prevented (by fixing the solid with respect to the 
container walls in experimental work) by most 
investigators, with few exceptions [6-81. Approximate 
mathematical models for melting in a horizontal tube 
have been formulated which take into account direct- 
melting by permitting the solid to respond to gravity [6, 
73. The results indicate great increase in the melting rate 
due to direct melting. Moore and Bayazitoglu [S] also 
included this phenomenon in their finite-difference 

solution of melting in a spherical enclosure and 
reported significant increase in the melting rate as a 
result of the direct contact. 

Published work on the moving heat source 
configuration is even more scarce. Emerman and 

Turcotte [9] formulated an approximatemathematical 
mode1 for migration velocity of a hot, rigid sphere 
which melted its way through a solid. Moallemi and 
Viskanta [lo] recently reported on experiments with a 
horizontal, cylindrical heat source, maintained at a 
constant surface temperature, which melted its way 
through a solid paraffin. The work also includes an 
approximate analytical solution of the source velocity 
as a function of the Stefan number and the effective 
density of the source. The experimental findings as well 
as the approximate solution revealed that conduction is 
the dominant heat transfer mechanism in the close- 
contact region. The same conclusions were based on 
experiments for a similar configuration but for a 
constant surface heat flux source [ 111. 

Although the term ‘close-contact melting’is (and will 
be) used in this work, it should be emphasized that the 
source and the solid are not in direct contact but are 
separated by a very thin film of melt. Possible physical 
situations are shown in Figs. l(aHd) with some 
exaggeration of the separation distance between the 
source and the solid in the close-contact region. Due to 
the descent of the solid [in Figs. l(a) and (c)] or the 
source [in Figs. l(b) and (d)], the melt is continuously 
squeezed out of the close-contact region. As a result, 
some part of the solid and the source remain in close- 
contact-i.e. separated by a very thin layer of melt, 
6(x) << R. 

In this work a mathematical mode1 is formulated for 
contact-melting heat transfer problems. The mode1 and 
solution procedure takes advantage ofthe fact that melt 
flow in the close-contact region is predominantly along 
the thin film channel of the melt (i.e. there is no flow 
recirculation in the region). The marching integration 
procedure may be adopted for the close-contact region 
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NOMENCLATURE 

asys acceleration of the coordinate system 
c specific heat 
F, buoyancy force 

F, drag force due to shear and pressure 
G position function 

Y gravitational acceleration 
h, latent heat-of-fusion 
k thermal conductivity 

P pressure 
Pr Prandtl number 

4” heat flux 
R radius of the heat source 
Ra Rayleigh number, see equation (12) 
Ste Stefan number, see equation (12) 
t time 
T temperature 

(u, u) melt velocity components in (x, y) 
directions 

U, velocity of the moving part 
V volume 

(x, y) coordinates, see Figs. 1 and 2. 

Greek symbols 

i 
thermal diffusivity 
thermal expansion coefficient 

A dimensionless melt thickness, 6/R 

A’ dA/d+ 
A0 melt thickness at 4 = 0” 
S melt thickness 
& PJP 
Q dimensionless temperature, see equation 

(12) 
V kinematic viscosity 

P density 

pH density of the heat source 
z shear stress at the surface of the moving 

part 
4 polar angle 

?J interface position angle, see Fig. 2 
& limiting angle upto which the formulation 

is valid. 

Subscripts 
I solid-liquid interface 
m fusion 
M moving part 
0 at4=0 
S solid 
W wall of the heat source. 

Superscripts 
* dimensionless quantity. 

of any of the possible configurations depicted in Fig. 1. 
For situations of Figs. l(a) and (b) in which the melt 
domain extends far beyond the close-contact region, 
the solution procedure may be used as part ofnumerical 

- 
(c) G&y)=0 Cd) 

FIG. 1. Schematic diagram of possible physical situations 
considered. 

scheme [12] to reduce computational cost (as 
compared to a single model and procedure developed 
for the entire melt domain). As an example, the model 
and procedure are used to study melting with a moving 
heat source [Fig. l(b)]. For this configuration, both 
constant temperature and constant heat flux boundary 
conditions have been successfully imposed at the 
surface of the source, but only the results for the 
constant surface heat flux are reported here. The effects 
of governing parameters of the problem on the extent of 
validity of the model are examined and discussed. 

2. ANALYSIS 

2.1. Problem formulation 
The mathematical model is formulated in a general 

form appropriate for any of the configurations shown in 
Fig. 1. The heat source is initially in contact with the 
solid phase-change material (PCM) which is at its 
fusion temperature, T,. At time t = 0, a constant 
temperature T, > T, or a constant heat flux qk is 
imposed on the surface of the source and melting 
begins. The solid-liquid interface is assumed to be 
sharply defined (i.e. melting occurs at a definite 
temperature). It is also assumed that the physical 
properties ofthemelt are constant except for the density 
in the buoyancy term (i.e. Boussinesq approximation). 
The difference between the densities of the moving part 
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and the melt is set large enough to provide a continuous 
descent such that 6(x) CC R. More specifically, we 
require the melt flow to be predominantly along the 
thin-film channel. 

Upon application of the stated assumptions, the 
conservation equations ofmass momentum and energy 
with respect to the coordinate system fixed to the heat 
source (as shown in Fig. 1) become 

“+‘“=O 
ax ay 

!Ttu?T+“!LcrE 
ay ay2' (3) 

The last term in equation (2) is the acceleration of the 
coordinate system and equal to dU,,/dt for mov- 
ing heat source problem and equal to zero for moving 
solid configuration. On the surface of the source, 

G,(x, y) = 0, the boundary conditions are : 

u=v=o (4) 

and 

T=T, or E=-qijk. 
ay 

(5) 

Taking into account the density change due to phase 
change [12], the boundary conditions at the interface, 
G,(x, y, t) = 0, are as follows : 

ii = --EOe+(&-1) 
ac,/at - 0,. VG, 

lVG,l’ 1 W (6) 
and 

T= T,. 

On the symmetry line, x = 0, 

a 
- = 0 and u = 0. 
ax (7) 

For the mathematical closure of the problem to be 
complete, two more equations are needed. These are the 
energy balance at the solid-liquid interface and the 
force balance on the moving part. The local energy 
balance at the interface yields 

VG,VT=+ (8) 

The motion ofthemovingpart is governed by Newton’s 
second law, 

puv.2 = pMV&j--Fb--Fd. (9) 

The above formulation is employed whenever the 
following general criteria are valid : 

6(x) << R and u(x, y) > 0. (10) 

These inequalities provide the condition that shear 

stress and conductive heat flux are significant only in 
the direction at right angles to the predominant flow 
direction. The model formulated is used to calculate the 
flow and temperature fields as long as the above criteria 
hold. Implementation of equation (9), however, 
requires knowledge of the buoyancy and drag forces 
acting on the moving part as well as its volume. 
Therefore, the above formulation should be used in 
conjunction with a second one which corectly models 
the rest of the melt domain to provide the necessary 
information for using equation (9)-i.e. shear stress and 
pressure variation on the surface ofthemovingpart and 
also heat flux at the surface of moving part required for 
calculating V, for moving solid configurations. 

The motion of the moving part, however, is 
essentially defined by the thermal conditions in the 
thin-film channel [12], where the interaction between 
the melt and the moving part is most intense. Therefore, 
ifmotion of the source (or the solid) is ofmain concern, a 
simple assumption for the interaction of the melt with 
the moving part may be added to the model to avoid 
solving theproblemfor theentire melt domain. Outside 
of the thin-film channel, pressure may be assumed to be 

constant and shear force may be neglected at the surface 
of the moving part. For the moving solid configuration, 
in order to calculate Vu, variation of the heat flux at the 
interface outside of the thin-film channel must also be 
assumed. The adoption of the model for each of the 
configurations of Fig. 1 may involve other conditions, 
and the solution procedure should be developed 
specifically for each case. As an example, the model is 
employed for configuration of Fig. l(b) and 
appropriate solution method is developed next. 

2.2. Formulation for mooing heat source conjiguration 
For the moving heat source configuration shown in 

Fig. l(b), experimental observations [ll, 121 have 
indicated that quasi-steady state is attained with 
respect to the moving source soon after initiating 
melting. Therefore, in addition to the general 
assumptions stated above, it is assumed that 

a 
U, = constant and - = 0. 

at (11) 

The following dimensionless variables and groups are 
introduced in the analysis : 

(x*, y*) = (x, y)/R ; A = 6/R 

(u*, u*) = (u, u)R/v; U, = UoR/v 

p* = pR2/(pv2); z* = ~R’/(pv~) 

0 = (T - T,)/( Tet - T,) ; Pr = v/a 

(12) 

Ra = BgR3(T,er - T,) ; Ste = c(T,,, - G) 
av h, 

where T,,, is a reference temperature and is defined as 

qef = T, + q;R/k (13) 
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for the constant surface heat flux source which is being 
considered here. 

Applying the assumption expressed by equation (1 l), 
the governing equations are transformed to the 
dimensionless form as : 

-+dC*=O au* 
ax* ay* 

(14) 

a2u* u*~+v*au*=-~+(Ra,Pr)*+_ 
w ay*2 (15) 

a0 ao i a28 
~*_+v*-_=_--__. 

ax* aY* pr ay*2 (16) 

With respect to the coordinates system shown in Fig. 2, 
the heat source surface and interface position functions 
are 

and 

G,(x*, y*) = y* = 0 

G,(x*, y*) = y* -A(x*) = 0. (17) 

The energy balance equation at the interface reduces to 

Note that 4 = x* due to nondimensionalization, and 4 
is the interface angle as shown in Fig. 2. The force 
balance equation on the source is simplified to 

(p cos 4 + 7, sin 4) db 

s 4L 

+ (p cos 4 + T,,, sin 4) d+ (19) 
lC 1 

where pH is the density of the heat source and r$ = 4L is 
the limit plane up to which the model is applicable 
[value of & is determined by criteria of equation (lo)]. 
The values of p and T in the first integral are calculated 
by the model, whereas the second integral is simplified 

FIG. 2. Physical model and coordinates for melting around a 
moving heat source. 

by assuming that 

p*(b) = P*(&.) and C(b) = 0 (20) 

for 4L < 4 < n. With this approximation, the second 
integral becomes -p(#~~) sin $L. 

The boundary conditions take on the following 

dimensionless forms : 

At surface of the source, y* = 0, 

u*=u*=O and g=-1.0 
aY* 

and at the solid-liquid interface, y* = A(+), 

(21) 

u* = EUl sin f&+(1 -E) 
U$ cos 4+A’U: sin 4 

i+u* 1 
v* = --EU; cos~$+(l --&)A 

U~cos~$+d’U~ sin4 

l+A12 1 
(22) 

and 

e = 0. 

On the plane of symmetry, x* = 0, 

a 
u* = 0 and -=O. 

ax* (23) 

2.3. Solution method and procedure 
The momentum and energy equations, equations 

(14) and (16), are parabolic in form, thus they may be 
solved via a computational scheme which marches 
along the dominant flow direction, x. GENMIX, a 

general numerical marching procedure originally 
developed by Patankar and Spalding [13] and later 
modified by Spalding [14], was adapted as the main 
computer algorithm for the present problem. Without 
going into details, the general features ofGENMIX and 
special procedures developed to adapt it to the problem 
here will be explained before outlining the solution 
procedure and the calculation steps. 

In the procedure, the transport equations are trans- 

formed into dimensionless streamfunction coordin- 
ates [(x, y) to (x, co)]. This is an appropriate way of 
expanding the width of the computational domain in 
conformity with changes in the thickness of the melt 
film. The computational nodes are distributed along 
o(0 < w < 1) such that nodes are clustered near the 
boundaries where the gradients of the variables are the 
greatest. Based on sensitivity studies conducted and 
examination of velocity and temperature profiles, total 
of 62 nodes were used across the melt thickness. 

The governing equations are solved by a marching- 
integration procedure. At every step in the integration, 
the distribution of the dependent variables (u and 0 
here) are known, and the task is to calculate their cross- 
stream distribution at the next streamwise station. The 
control volume approach is employed to generate the 
finite-difference discretized equations which are solved 
by the Tri-Diagonal Matrix Algorithm (TDMA). In 
simplifying the integrals over the faces of the control 
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volumes, the cross-stream fluxes are calculated via a 
‘power law’ scheme which has been proven [lS] to 
produce more accurate results compared to the original 
linear profile or its modified version, the ‘high lateral 
flux modification’ [13]. Since the melt flow is confined 
between the source and the solid the streamwise 
pressure gradient which is a function of the melt-film 
development (i.e. its thickness and mass flux through it) 
must be determined at each integration step. To do so, 
overall mass conservation across the melt-film 
thickness is used to calculate the pressure gradient at 
every step. 

To implement the marching-integration procedure 
explained above, it is necessary to know the 
distribution of all the variables at a station upstream of 
the region of interest. For the present problem, the 
starting point is a stagnation point on the plane of 
symmetry [i.e. ~(0, y) = 0 and a/ax = 01. The vanishing 
velocity can not be enforced as it will produce a 
singularity. Therefore, the integration must start from a 
very small but finite value of x, with a guessed velocity 
and temperature profile over a guessed melt thickness 
A,,. The heat source velocity is also estimated initially. 
To enforce the symmetry condition, the first step of 
the integration procedure is repeated, with transfer of 
the calculated downstream velocity and temperature 
profiles back to the starting station and updating the 
velocity ofthe source. To update the source velocity, A0 
is treated as a parameter and energy balance equation is 
evaluated at 4 = 0 to yield 

(J,* - Ste ae 
&pr ay* y.=Ao 

after first setting A’(0) = 0 and 3 = 0 due to symmetry. 
This procedure is repeated until less than 0.01% change 
occurs in the profiles or the source velocity. Then the 
main marching-integration may proceed. 

After calculating the velocity and temperature 
profiles at a streamwise station (other than the first one), 
the energy balance equation at the interface is used to 
calculate the melt-film thickness. Equations (18) and 
(24) are combined to yield 

From Fig. 2, it can be seen that 

A!=$=tan(g--4). 

Equations (25) and (26) are solved iteratively for A’ from 
which the new melt-layer thickness is easily calculated. 
In the first of these iterations, A’ from the previous 
station is used to calculate Q, from equation (25) with 
the constraint that 0 < 4 < 4 < 7[/2. Then, A’ at the 
new station may be determined from equation (26). 
With a small enough forward step Ax, three or four 
iterations of equations (25) and (26) were enough for 
convergence of A’. The pressure gradient is then 
adjusted for the new melt thickness and mass flow rate. 

The pressure and shear forces acting on the surface 
of the source are calculated during the marching- 
integration, and the total contribution of these forces in 
the thin-film channel region to the overall force balance 
on the source [first integral in equation (19)] is 
determined. 

The marching-integration explained is performed up 

to the point 4 = &, where the criteria of equation (10) 
still holds but would be violated in the next step forward 
if calculation were continued. The value of p(&) is then 
used to evaluate (~n-~)/p from equation (19). This 
evaluated value of the heat source mass corresponds to 
the assumed value of melt thickness at the stagnation 
point, Ao. If the solution for a particular value of (pn 
-p)/p is desired, the above procedure is used iteratively 
(i.e. regula fulsi or secant method) to calculate the 
corresponding value of Ao. Since a parametric study 
was intended, the value of (pn - p)/p was calculated for 
different values of A0 as parameter. 

The sequence of important operations in the 
solutions procedure are : 

1. 

2. 
3. 
4. 

5. 

6. 

7. 
8. 

Assume A,, IJ: and velocity and temperature 
profiles and Ax for the first step. 
Solve the energy equation, equation (16). 
Solve the momentum equation, equation (15). 
Find the melt-film thickness from equations (25) and 
(26) and also the new total melt mass flow rate. 
Adjust the pressure gradient to comply with the new 
melt-film thickness and melt mass flow rate, and 
calculate the contribution of this step to the first 
integral of equation (19). 
Determine forward step size Ax and march forward 
ifthecriteriaofequation(lO)arestillvalid.(Thefirst 
integration step is slightly different as was explained 
earlier. That is, no forward step is taken unless the 
convergence criteria for variable profiles and the 
source velocity is met.) 
Return to step 2 if criteria of equation (10) is valid. 
Calculate (pn--)/p and adjust A,, if necessary. 
Return to step 1 if A,, is not converged. 

The final point to note is the size of the forward step 
Ax. From the implicit nature of the finite-difference 

scheme, it was expected that even large steps would 
produce stable solution. However, the melt-film growth 
(and as a result entrainment rate) calculation is not 
entirely implicit. Thus, the size of the step is made 
proportional to the melt-film thickness and also the 
entrainment rate (i.e. rate of increase of total melt flow 
rate). The step size change was limited to 5% increase as 
long as it did not increase the melt flow rate by more 
than 5% and it remained less than 10% of A. 

3. RESULTS AND DISCUSSION 

The numerical results for the temperature and 
velocity fields in the thin-film channel are presented 
here. First, results for a typical set of parameters are 
discussed and general features of the solution are 
described. This is then followed by a discussion of the 



860 M. K. MOALLEMI and R. VISKANTA 

1.0 

.8 

.6 * 
q, I 
%I 

.4 

.2 

0 
0 IO 20 30 40 50 60 70 80 90 

c 
FIG. 3. Angular variation of the melt thickness and heat flux at the interface. 

effects of different governing parameters of the problem melt-film at different angular positions along the 
(i.e. Ste, As, Pr, Ra and E). Representative results are channel. In the figure, the abscissa is the normal 
calculated for the following set of parameters : distance from the surface of the source scaled by the 

Sre = 10.0, A0 = 0.003 
local melt thickness, A($), and the ordinate is 
dimensionless melt temperature defined as 

Pr = 55.6, Ra = 8 x 10’ 
@(b, Y*) 

and AT/AT, = (T- T,)/CT,(@- Ll = et4, oj . 

& = 1.0. The temperature profile is very close to a linear one at 

3.1. Representative results 
Figure 3 presents the variation of the melt-layer 

thickness (scaled by A,,) and also the heat flux at the 
interface(scaled by qt the surface heat flux ofthe source) 
along the melt channel. The figure illustrates a gradual 
increase in the melt-layer thickness along the channel 
which causes a gradual increase in the thermal 
resistance of the melt-film. This, in turn, results in a 
reduction of heat transfer to the solid-liquid interface 
along the channel, also shown in Fig. 3. For the set of 
parameters specified, the calculations were terminated 
at 4 = dL = 66.71”, where the criteria of equation (10) 
were still valid. The calculations at the next step 
resulted in negative tangential velocity near the 
interface and thus were discarded. 

Figure 4 presents the temperature profiles across the 

C$ = 0” where q;/qi = 0.9852. Along the melt channel, 
as A(4) increases and the ratio q;/qt decreases with 4, 
the temperature distribution across the channel 
deviates more and more from linearity. Figure 5 
illustrates variation of the surface temperature of the 
source as well as the bulk temperature of the melt along 
the channel (both scaled by the temperature difference 
across the melt-film at 4 = o”, AT,,, on the LHS scale) 
where 

A 

AT,,, = 
U 

u(T-T,)dy ii 
0 Ii 

and ii is the average melt velocity across the melt-film. 
The figure shows that the surface temperature of the 
source as well as the bulk temperature of the melt 
increase along the melt channel. This result is indicative 

1.0 

.0 

.6 
XL 
AT, 

.4 

0 .2 .4 .6 .8 1.0 
y/A (9) 

FIG. 4. The melt temperature profiles along the channel. 
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FIG. 5. The variations of the surface temperature of the source and bulk average temperature of the melt along 
the channel. 

of increased effect of convective heat transfer from the 
source along the melt channel. 

The tangential and normal melt velocity profiles 
(scaled by U,, the source velocity) at different angular 
positions along the melt channel are presented in Figs. 6 
and 7, respectively. The abscissa is the normal distance 
from the surface of the source scaled by A(4). The first 
point to note in Fig. 6 is that the velocity profiles which 
are symmetric near 4 = 0” (up to 4 = 40”) gradually 
become nonsymmetric along the melt channel. 
Furthermore, the shear stress at the solid-liquid 
interface changes sign just before the marching 
integration was terminated as the tangential melt 
velocity became negative at a point near the interface 
(recall that the velocity boundary condition imposed at 
the interface was that u = U0 sin 4 > 0 for E = 1.0). 

The local maximum of the tangential melt velocity 
first increases with 4 near 4 = 0” and then decreases 
along the melt channel. For the set of parameters 
specified above, the absolute maximum value of 74.8 Uz 
was attained at 4 = 16.5”. This is due to the adverse 
effects of the widening of the melt channel and the 
entrainment of the melt into the channel on the 
tangential melt velocity. Near 4 = O”, the rate of 
entrainment of melt into the channel, which is 
proportional to normal melt velocity at the interface, 

80 

60 

u 
uo 

40 

r 

Fig. 7, is high enough to compensate for the effect of 
widening rate of the melt layer which is small here (i.e. 
near 4 = o”, Fig. 3) and also to cause an increase in the 
tangential melt velocity. Whereas, further along the 
channel, the rate of growth of the melt film becomes 
large enough not only to compensate for the en- 
trainment of melt (which decreases with 4 from Fig. 7) 
but also to cause the melt to decelerate. Adding these 
adversely acting mechanisms to the buoyancy effect, 
which causes the melt close to the source to gain some 
momentum and accelerate, the melt away from the 
source decelerates more, and its velocity eventually 
becomes negative at a point near the interface. 

3.2. Parametric results 
Table 1 presents the dimensionless parameters and 

summarizes the results for computer calculations for 
different values of A0 and Ste. In these particular runs n- 
octadecane is considered to be the PCM, Pr = 55.6. 
The effect of volume change due to melting is neglected 
(E = LO), but buoyancy force is considered. For all the 
cases presented in Table 1, the marching integration 
was terminated at & < 90”, where the tangential melt 
velocity would become negative at least at one point 
(usually a point near the interface) in the next step. As 
shown in Table 1, the value of &Q, the last angular 

0 .2 .4 .6 .8 1.0 

Y/A($) 

FIG. 6. The tangential melt velocity profiles along the channel vs y/A(+). 
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0 .2 .4 .6 .8 IO 
Y/AC@ 

FIG. 7. The normal melt velocity profiles along the channel vs y/A(4). 

station where the formulation is valid, is practically 
independent of A0 while being a strong function of Ste. 

The results of Table 1 show that the heat source 
velocity is almost independent of A,, when Ste is kept 
constant. For constant Ste, A,, is a measure of effective 
density of the heat source, &-P)P, and therefore 
Table 1 indicates that U,* is independent of &-P)/P 
[i.e. U: increased by 2.3% when A0 was decreased from 
0.005 to 0.0005 which resulted in (pH - p)/p increasing 
51 times from 0.0562 to 2.8681. The dependence of UC 
on Ste and relative density of the source is more 
precisely exhibited in Fig. 8. Analysis predicts an upper 
bound of unity (independent of the relative density of 
the source) for U,*Pr/Ste. The fact that U,* is almost 
independent of &-P)/P is in agreement with the 
experimental results [ll, 121. However, the experi- 
mental results for U,*Pr/Ste are well above the 
predicted upper bound of unity (Fig. 9). The dis- 
crepancy is believed to be mainly due to the con- 
duction heat transfer in the wall of the heat source 
towards the contact region where heat transfer from the 
source is the highest. This is confirmed by an energy 
balance on the lower half of the source that yields 
U,*Pr/Ste = 742 as an estimate. 

The finding that Ug is independent of the relative 
density of the source suggests that the motion of the 
source is essentially defined near the lower stagnation 

point where conduction is the dominant mode of heat 
transfer between the source and the solid. Moreover, 
from the weak dependence of U,* on (pH -p)/p, the 
assumption of constant descent velocity (for a constant 
surface heat flux source) is not only justified for 
the present configuration but also for others shown 
in Fig. 1. 

Effects of Ste and A0 on the growth of the melt-layer 
thickness and also angular variation of q;/qk are 
presented in Figs. 10 and 11. Inspection of the figures 
reveals that while the heat flux at the surface of the 
source is constant, the amount of heat transferred to 
the interface decreases along the channel due to the 
increase in the melt thickness (and thus its thermal 
resistance) with 4. Therefore, the convective heat 
transfer from the melt to the interface increases along 
the channel. Figure 10 shows that the rate of increase in 

the melt thickness increases with decreasing Ste when 
A,, is kept constant. While this may seem to be contrary 
to expectation, it can be explained by comparing 
variation of q;/qk along the melt channel for different 

Table 1. Dimensionless parameters and results for constant surface heat flux source with Pr = 55.6 and E = 1.0 

A0 Ste Ra 
AT,(&) q;(h) h-P 

A(&) (“C) 4:: P 

0.0005 
0.001 
0.003$ 
0.005 
0.01 

0.003 
0.003 
0.003$ 
0.003 

10.0 8.0 x 10’ 
10.0 8.0 x 10’ 
10.0 8.0 x 10’ 
10.0 8.0 x 10’ 
10.0 8.0 x 10’ 

2.0 1.6 x 10’ 
5.0 4.0 x lo7 

10.0 8.0 x lo7 
20.0 1.6 x 10s 

0.1794 0.5576 0.9975 68.4” 0.06426 49.66 0.4586 2.868 
0.1790 1.114 0.9952 68.0 0.06414 49.72 0.4626 0.942 
0.1772 3.333 0.9852 66.7” 0.06366 49.99 0.4795 0.1467 
0.1754 5.538 0.9741 65.3” 0.06315 50.23 0.4980 0.0562 
0.1711 10.99 0.9520 61.8” 0.06195 50.85 0.5161 0.0126 

0.0359 0.6690 0.9969 39.2” 0.05733 11.62 0.8299 0.0044 
0.0893 1.670 0.9925 54.1” 0.06017 27.25 0.6577 0.0328 
0.1772 3.333 0.9852 66.7” 0.06366 49.99 0.4795 0.1467 
0.3492 6.636 0.9708 79.0” 0.06878 88.32 0.2938 0.6105 

t Note that q;‘(O)/q& = UzPr/Ste due to nondimensionalization. 
1 Standard case. 
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FIG. 8. Dependence of the source velocity on Ste and (p,--p)/p. 
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FIG. 9. Comparison of the predicted and measured variation of the source velocity with its relative density. 
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FIG. 10. Angular variation of the melt thickness and heat flux at the interface for A,, = 0.003. 
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Table 2. Dimensionless parameters and results for constant surface heat flux source with different values of z, 
Ra and Pr for Ste = 10 

8.0x 10’t 55.6 1.0 0.1772 3.333 0.9852 66.70 
8.0 x lo6 55.6 1.0 0.1772 3.333 0.9852 75.34 
8.0 x lo5 55.6 1.0 0.1772 3.333 0.9852 73.85” 

0 55.6 1.0 0.1772 3.333 0.9852 73.68” 
0% 55.6 1.0 0.1772 3.333 0.9852 90.0 

8.0 x 10’ 55.6 1.05 0.1771 3.332 0.9847 67.90 
8.0x 10’t 55.6 1.0 0.1772 3.333 0.9852 66.70” 
8.0 x 10’ 55.6 0.95 0.1773 3.334 0.9858 65.43” 

8.0 x 10’ 55.6 1.0 0.1772 3.333 0.9852 66.70” 
3.6 x lo6 11.0 1.0 0.8954 2.367 0.9850 74.43” 

t Standard case. 
t. The condition that A(+) < 0.1 was removed for this run. 

values of Ste in the same figure. The figure shows that at 
any I$, the ratio q;/qz (i.e. fraction of the heat generated 
at the surface of the source which is received at the 
interface) increases as Ste decreases. In other words, on 
a fractional basis, less of the heat generated at the 
surface of the source is converted away by the melt for 
smaller Stefan numbers. Therefore, the rate of increase 
of the melt-film thickness is higher for smaller Stefan 
numbers. 

The effects of A,, on the variation of A and q;/qk along 
the channel for a constant Ste are pre- 
sented in Fig. 11. This figure indicates that the sol- 
utions are similar, and the influence of A0 [and 
therefore (pH - p)/p] decreases as 4 increases. The posi- 
tion of the boundary plane 4 = 4L, for example, de- 
creases by only 3.1” when A0 is increased 10 times 
from 0.0005 to 0.005 and the wall temperatures differ by 
only 0.6”C on the boundary planes, Table 1. It may, 
therefore, be concluded that increasing A, (i.e. 
decreasing the heat source density) is causing the 
development of the solution to be retarded for a few 
degrees along the channel for 4 > SO”. 

.I0 

.08 

.06 

A 

04 

0.06366 49.99 0.4795 0.1467 
0.1 72.61 0.4002 0.1489 
0.1 73.85 0.4420 0.1493 
0.1 76.61 0.4500 0.1496 
0.1998 128.40 0.2983 0.1492 

0.06484 50.12 0.4553 0.1629 
0.06366 49.99 0.4795 0.1467 
0.06242 49.81 0.4906 0.1323 

0.06366 49.99 0.4795 0.1467 
0.1 52.94 0.4253 0.0595 

3.3. Effects of buoyancy in melt 

Table 2 summarizes the effects of buoyancy force in 
the melt on different features of the solution. In the 
table, the results for the standard set of parameters, 
Ra = 8 x 107, are compared with results from com- 
puter simulations in which Ra is arbitrarily reduced and 
set equal to 8 x 106, 8 x lo5 or zero. The heat source 
velocity is defined at 4 = 0” (and is controlled primarily 
by heat conduction between the source and the solid) 
and is not affected by the change in the buoyancy force 
in the melt. The location and magnitude of the absolute 
maximum tangential melt velocity is also found to be 
independent of the Rayleigh number. This indicates 
that in the first part of the channel, melt flow is 
essentially induced by the descent of the source. 

Figure 12 presents the tangential velocity profiles of 
the melt at different locations along the channel for Ra = 

0. A comparison between Figs. 6 and 12 suggests that 
the effects of natural convection in the melt gradually 
became significant as 4 increases. This is due to the fact 
that after passing the plane on which the tangential melt 
velocity attains its absolute maximum, the entraining 
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FIG. 11. Angular variation of the melt thickness and the heat flux at the interface for Ste = 10. 
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FIG. 12. The tangential velocity profiles of the melt for Ra = 0 for A0 = 0.003 and Ste = 10. 

melt can no longer compensate for the widening of the 

channel, thus local and average melt velocities decrease 

as C$ increases. Therefore, the melt motion induced by 

buoyancy eventually becomes comparable with the 

motion induced by the descent of the source; the 

velocity profile loses its symmetrical shape, and flow 

recirculation occurs further along the channel. For 
Ra = 0 or 8 x 106, flow recirculation did not occur up 
to 4 = 75.34” and 73.68”, respectively, and calcu- 
lations were terminated as A attained its maximum 
permitted value of 0.1. If calculations were continued 
beyond A = 0.1, no flow recirculation would have 
occurred even up to 4 = 90” as indicated by Table 2. 

Figure 13 illustrates the effects of natural convection 
in the melt on the angular variation of the melt 
thickness and heat flux at the surface of the source. The 
results show that the effect of natural convection on the 
growth of the melt-film thickness and also the heat flux 
at the interface is negligible for 4 < 45” but becomes 
significant for larger 4s. The figure indicates that a 
reduction in Ra accelerates growth ofthe melt thickness 
and increases the rate ofheat transfer to the interface. In 
other words, natural convection in the melt increases 
the amount of heat that is converted away by the melt 
by increasing the nonlinearity of the temperature 
profile. 

3.4. Effects of phase change material 
The effects of the PCM on the parameters governing 

the descent of the source are presented in Table 2 by 
comparing two computer simulations one with n- 
octadecane (standard case, Pr = 55.6) and the other 
with ice (Pr = 11.0) as PCM, both with Ste = 10. The 
results confirm that the motion of the heat source is 
defined near 4 = 0” where heat transfer between the 
source and the solid is essentially by conduction. The 
absolute maximum of the tangential melt velocity 
(scaled with U,*) and the location where the maximum 
occurs are also in good agreement (Table 2). This 
finding suggests similar development ofthe flow field in 
the early stage of the melt-film channel for the two 
materials. The angular variation of A and qf/qk along 
the melt channel for the two materials is compared in 
Fig. 14. The results indicate that up to4 x 45”, thermal 
and hydrodynamic developments of the melt (and 
therefore the growth of A) are independent of Pr. For 
greater &, the solutions diverge and the effects of Pr 
become gradually distinct. For Pr = 55.6, the 
calculations were terminated at & = 66.7” as the 
velocity tended to become negative while for the case of 
ice (Pr = 11.0) the solution was terminated at &, = 
74.43” as A exceeded 0.1. Comparison of the Rayleigh 
numbers for these two cases reveals that for the same 
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of Ra on the angular variation of the melt thickness and heat flux at the interface A,, 
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FIG. 13. Effects = 0.003 
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14. The effects of Pr on the angular variation of the melt thickness and the heat flux 
A0 = 0.003 and Ste = 10. 

Ste, the thermophysical properties of water generated a 
smaller buoyancy force in the melt (Ra = 3.68 x lo6 for 
Pr = 11.0 and Ra = 8 x lo7 for Pr = 55.6) which 
caused a smaller upward melt velocity. Therefore, the 
tangential melt velocity remained positive across the 
melt-film up to A = 0.1. The tangential velocities, 
however, gradually became nonsymmetric for 
4 > 60” ; an indication of imminent melt recirculation 
along the channel. 

Across the melt filin in the close-contact region, the 

melt temperatures were found to be very close to linear 
indicating that conduction is the major mode of heat 
transfer from the source to the solid. The contribution 
ofconvective heat transfer and also the effects ofnatural 
convection in the melt increased with the angle 4. The 
range of validity of the model and procedure (i.e. value 
of &) was found to strongly depend of Ste while being 
almost independent of AO, and thus relative density of 
the source. 

3.5. Effects of density change during melting 

The effect of density change due to melting was 
examined in computer simulations with E = 1.05 and 
0.95 and the results are compared with the base case, 
E = 1.0, in Table 2. The change in the source velocity 
and temperature difference across the melt film at 
C/J = 0” are of the order of O.OlO/O for &5% change in 
density during melting and thus negligible. Increasing 
E by 5% causes the solution to lead the base case 
solution by about 1.2” at 4L, and the decrease of 5% 
results in a lag of 1.3” at & as can be seen from the table. 
It may thus be concluded that the density change has a 
negligible effect on the over all process. 
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4. CONCLUSIONS 

A mathematical model was formulated and a 
marching integration procedure was developed for the 
melting of a solid which is continuously in close contact 
with a heat source. The model and procedure were 
successfully employed for the problem of melting under 
a descending heat source. The velocity of the source was 
found to be almost independent of its mass. This point is 
in agreement with the experimental measurements [ll, 
123. With regard to dependence of lJ,* on Ste, however, 
the numerical results and experimental measurements 
[l 1, 123 are not in good agreement while both predict 
an almost linear relation between Ui; and Ste. Due to 
experimental idealizations (mainly heat conduction in 
heat source towards the lower stagnation point), the 
measured heat source velocities are higher (up to 40%) 
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ANALYSE DU TRANSFERT THERMIQUE DANS LA ZONE FONDUE AU CONTACT 

R&m-La principale caractCristique de la fusion de contact est que la source et le solide sont 

continuellement s6par.S par un film tris mince liquide dans lequel l’tcoulement est surtout dans une seule 

direction (le long du film). Ce fait est exploit& pour formuler un modkle mathkmatique et dtvelopper une 
proddure d’intigration des Equations du mod6le. Comme exemple, on traite le probleme de la fusion proche 
d’une source g flux surfacique constant et descendante, horizontale cylindrique. Les risultats montrent que le 

transfert thermique de la source au solide est domin6 par la conduction & travers la fine couche fondue. Pour 
cette configuration, leseffets du nombre de Stefan et de la densiti relative de la source sur sa vitesse sont Ctudiis. 
La vitesse calculQ de la source et la dCpendance B la densiti relative sont en bon accord avec les expiriences. 

THEORETISCHE UNTERSUCHUNG DES WARMEOBERGANGES 
BEIM KONTAKTSCHMELZEN 

Zusanunenfassung-Die wichtigste Eigenschaft des Kontaktschmelzens ist die Trennung der Quelle und 
des Festkiirpers durch einen sehr diinnen Schmelzfilm, in dem eine Strijmungsrichtung vorherrscht (entlang 
des diinnen Film-Kanals). Diese Tatsache wurde benutzt, urn ein mathematisches Model1 zu entwickeln 
und die Prozedur einer Vorwlrts-Integration fiir die Modellgleichungen aufzustellen. Als Beispiel wird das 
Problem des Schmelzens unter einer herabsinkenden horizontalen zylindrischen Quelle fiir den Fall einer 
konstanten WLrmestromdichte an der Oberfliiche gel&t. Die Ergebnisse zeigen, dal3 der Wgrmeiibergang 
von der Quelle zum Festkijrper im wesentlichen durch Wgrmeleitung in der diinnen Schmelzschicht erfolgt. 
Fiir diesen Fall werden die Einfliisse der Stefan-Zahl und der relativen Dichte der Quelle auf deren 
Sinkgeschwindigkeit untersucht und dargestellt. Die geschiitzte W&mequellen-Geschwindigkeit und deren 

Abhiingigkeit von der relativen Dichte stimmen gut mit Experimenten iiberein. 

AHAJITILI3 TEl-IJIOOEMEHA l-IPH KOHTAKTHOM l-IJIABJIEHRkI 

AHHOTZIQIISI-_AJM nnaBneHua npa HenocpencTaeHHoM xonTaKTe xapaKTepuo TO, wo HCTOYHHK Tenna A 
TBepAOe Ten0 pa3AeAeHbr TOHKOii nJIeHKOii paCnJIaBa, B KOTOpOir TeYeHBe nOYTn LleJIUKOM OAHOMepHOe 

(T.e. BAonb TOHKO~~ nneHKn). 3~0 ncnonb30aaHo AA~ +O~M~JI~~OBKB MaTeMaTwtecKoP Monenn A pa3pa- 

6OTKA MeTOAHKH liHTerpHpOBaHW4 ypaBHeHH8 MeTOAOM npOrOHKH. B KaYeCTBe npuMepa pemaeTCa 

3aAa’,a n,,aBJIeHHlI nOA HaKAOHHbIM rOpH30HTaAbHbIM uH,WHApHWCKnM IICTO’IHHKOM np‘, nOCTOffHHOM 

TenJIOBOM nOTOKe Ha nOBepXHOCW. Pe3yJIbTaTbt CBHAeTeAbCTByIOT 0 TOM, WO TenJIOnepeHOC OT EiCTO’I- 

HAKa K TBepAOMy TeAy npOnCXOAnr B OCHOBHOM 3a CYeT TenJIOnpOBOAHOCTn Wpe3 TOHKMfi CJIOti 

pacnnasa. npeACTaBAeHb1 pe3yJIbTaTbI no ~AnaHnW3 qncna Cre@aua A OTHOCHTenbHOti ~JIOTHOCTH 

NCTO’IHIIKQ Ha CKOpOCTb TenAOO6MeHa npH TaKOii KOHc$ESr,'paLWl. PaCC’IHTaHHaa CKOpOCTb -rennoo6- 
MeHa M ee 3aBHCUMOCTb OT OTHOCEiTeJIbHOii nJIO’rHOCTL4 XOpOmO COrJIaCyIOTCa C 3KCnepHMeHTaAbHbIMA 

AaHHbIMu. 


